of the scatof this work nple binary ructure. If eflection of system was :structures, here are no
vity of five s also been were made r scattering lloy system, 's rule.

- by melting te week and gth of 2 in . e resistivity im temperachibited the tem; it was
atures, solid , obtain the que and the in detail by ah are shown , mample for the standard ofentiometer

Fig. 2. Typical resistance versus pressure isotherms for the $25 \mathrm{at} \% \mathrm{Au}-75 \mathrm{at} \% \mathrm{Ag}$ alloy. O indicates increasing pressure and Δ indicates decreasing pressure
to measure all voltages. Coarse temperature control was effected by positioning the pressure bomb in the vapor just above the liquid bath and fine control ($\pm 0.05^{\circ} \mathrm{K}$) was accomplished with a Cryogenics Research model TC 101 controller. Below $30^{\circ} \mathrm{K}$ temperature was measured within $\pm 0.05^{\circ} \mathrm{K}$ using a $\mathrm{Cu}-\mathrm{AuFe}$ thermocouple. Above $30^{\circ} \mathrm{K}$ temperature was measured to within $\pm 0.5^{\circ} \mathrm{K}$ using a Cu -constantan
 thermocouple.

The resistance data were taken as a function of pressure at various constant temperatures. Typical isotherms are shown in Fig. 2 for the $c=0.25$ alloy. The resistance data were taken with both increasing and decreasing pressure to insure that the sample had not been strained and that the temperature remained stable during the run. Several runs at the same temperature indicated that the initial pressure derivative, $R^{-1} \mathrm{~d} R / \mathrm{d} P$, could be determined to within $\pm 0.05 \times 10^{-3} \mathrm{kbar}^{-1}$.

To compare the experimental results with theory the pressure derivative of the resistance must be measured at a constant volume, V_{0} (usually taken as the volume of the sample at $\left.0^{\circ} \mathrm{K}\right)$. For $T>0^{\circ} \mathrm{K}$ the volume, $V(T)$, is calculated from the thermal expansion and the pressure, P^{\prime}, required to compress the sample back to V_{0} is calculated from the compressibility. The constant volume pressure derivative, $R^{\prime-1} \mathrm{~d} R^{\prime} / \mathrm{d} P$, is the pressure derivative measured at P^{\prime}, and for the $\mathrm{Ag}_{1-c} \mathrm{Au}_{c}$ alloys at $298^{\circ} \mathrm{K}, P^{\prime} \approx 10$ to 12 kbar . The resistance of the $c=0.25$ alloy was measured as a function of pressure up to 20 kbar at $298^{\circ} \mathrm{K}$ in a high pressure liquid pentane press. The constant volume pressure derivative $R^{\prime-1} \mathrm{~d} R^{\prime} / \mathrm{d} P$ (measured at 12 kbar) was found to be 9% less than $R^{-1} \mathrm{~d} R / \mathrm{d} P$ (measured at 1 bar). For $T<200^{\circ} \mathrm{K}$ the difference between $R^{\prime-1} \mathrm{~d} R^{\prime} / \mathrm{d} P$ and $R^{-1} \mathrm{~d} R / \mathrm{d} P$ was found to be within the experimental error. To convert from resistance to resistivity the following expression is used to account for the pressure dependence of the geometrical factor

$$
\begin{equation*}
\frac{1}{\varrho} \frac{\mathrm{~d} \varrho}{\mathrm{~d} P}=\frac{1}{R^{\prime}} \frac{\mathrm{d} R^{\prime}}{\mathrm{d} P}-\frac{\chi(T)}{3} \tag{1}
\end{equation*}
$$

where $\chi(T)$ is the compressibility at T. The compressibility of the alloys was obtained by extrapolating between the values for pure Ag and Au [5 to 7].

3. Results

The measured initial pressure derivative, $R^{-1} \mathrm{~d} R / \mathrm{d} P$, as a function of temperature for three of the alloys is shown in Fig. 3. For these alloys $R^{-1} \mathrm{~d} R / \mathrm{d} P$ is observed to increase smoothly with decreasing temperature $(\approx-1.4 \times$ $\times 10^{-3} \mathrm{kbar}^{-1}$ at $273{ }^{\circ} \mathrm{K}$ to $\approx-0.7 \times 10^{-3} \mathrm{kbar}^{-1}$ at $4^{\circ} \mathrm{K}$). In the case of pure

[^0]
[^0]: 35 physica (b) 51/2

